Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Andrei V. Churakov, ${ }^{\text {a }}$ Dmitry P. Krut'ko, ${ }^{\text {b }}$ Maxim V. Borzov, ${ }^{\text {b }}$ Roman S. Kirsanov, ${ }^{\text {b }}$ Sergei A. Belov $^{\text {b }}$ and Judith A. K. Howard ${ }^{\text {c }}$

${ }^{\mathrm{a}} \mathrm{N}$. S. Kurnakov Institute of General and

 Inorganic Chemistry, Russian Academy of Science, 31 Leninskii Prospect, Moscow 119991, Russian Federation, ${ }^{\text {b }}$ Department of Chemistry, Moscow State University, Leninskie Gory, Moscow 119992, Russian Federation, and ${ }^{\text {c }}$ Department of Chemistry, University of Durham, Science Laboratories, South Road, Durham DH1 3LE, EnglandCorrespondence e-mail: churakov@igic.ras.ru

Key indicators

Single-crystal X-ray study

$T=120 \mathrm{~K}$

Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
Disorder in solvent or counterion
R factor $=0.039$
$w R$ factor $=0.085$
Data-to-parameter ratio $=19.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Di- μ-pyridyl-1:2 $\kappa^{2} N: C^{2} ; 2: 1 \kappa^{2} N: C^{2}-\mu$-tetrahydro-furan- $\kappa^{2} O: O$-bis[bromo(tetrahydrofuran)magnesium(II)] tetrahydrofuran hemisolvate

The title compound, $\left[\mathrm{Mg}_{2} \mathrm{Br}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)_{2}\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}\right)_{3}\right] \cdot 0.5 \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$, contains dimeric associations of Mg atoms bridged by tetrahydrofuran (THF) molecules. The coordination polyhedron of the Mg atom is a slightly distorted $\mathrm{MgCNO}_{2} \mathrm{Br}$ trigonal bipyramid with two THF molecules in the axial positions. One O atom occupies a site with symmetry 2 .

Comment

The main molecule of the title Grignard reagent, $\left(\mu-\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}\right)$ $\left[\mathrm{Br}\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}\right)\left(\mu-\eta^{2}-\mathrm{C}, N-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}-2\right) \mathrm{Mg}\right]_{2}$, (I) (Fig. 1), is dimeric $\left[\mathrm{Mg} 1 \cdots \mathrm{Mg} 1^{\mathrm{i}}=3.3237\right.$ (18) \AA; symmetry code: (i) $\left.-y,-x, \frac{1}{2}-z\right]$ and is generated by twofold symmetry with O2 lying on a twofold rotation axis. The coordination polyhedron of the Mg atom is a slightly distorted $\mathrm{MgCNO}_{2} \mathrm{Br}$ trigonal bipyramid (Table 1) with two tetrahydrofuran (THF) molecules in the axial (ax) positions. Bromine, pyridyl N and C atoms occupy equatorial (eq) sites. The eq-Mg1-eq angles lie within the range 115.52 (11)-121.74 (8) ${ }^{\circ}$ and the $\mathrm{ax}-\mathrm{Mg} 1-\mathrm{eq}$ angles are close to $90^{\circ}\left[83.16(8)-95.07(10)^{\circ}\right]$.

(I)

This coordination environment of Mg is rather characteristic for adducts of Grignard reagents with THF, as was observed for MeMgBr (Vallino, 1969) and EtMgCl (Toney \& Stucky, 1971). The $\mathrm{Mg} 1-\mathrm{Br} 1, \mathrm{Mg} 1-\mathrm{O} 1$ and $\mathrm{Mg} 1-\mathrm{C} 1$ bond lengths are normal and consistent with related structures (Cambridge Structural Database; Version 5.27 of January 2006; Allen, 2002). The Mg1-N1 distance in (I) is close to that found previously for pyridyl substituted alkylmagnesiumbromide [2.122 (4) Å; Al-Juaid et al., 2001].

The sum of valence angles around $\mathrm{O} 1,358.0^{\circ}$, corresponds to $s p^{2}$-hybridization. Analysis of data in the CSD showed that the latter is common for structures with $\mathrm{Hal}-\mathrm{Mg}(\mathrm{C})-$ O (THF, terminal) fragments where the sum of angles varies

[^0]

Molecular structure of the main molecule of (I), showing 50\% probability displacement ellipsoids with H atoms omitted for clarity. [Symmetry code: (i) $-y,-x, \frac{1}{2}-z$.]
from 351.8 to 360.0°. The second (O2) THF molecule is bridging and the $\mathrm{Mg} 1-\mathrm{O} 2-\mathrm{Mg} 1^{\mathrm{i}}$ angle is $88.86(10)^{\circ}$ [symmetry code: (i) $-y,-x, \frac{1}{2}-z$]. As expected, the $\mathrm{Mg}-\mathrm{O} 2$ bond length is much longer than $\mathrm{Mg}-\mathrm{O} 1$.

To the best of our knowledge, (I) is only the second example of an Mg complex with a bridging THF molecule. Previously, the dinuclear complex $\left[(\mathrm{THF})\left(\eta^{2}-\mathrm{PhNCNPh}\right)\right]_{2} \mathrm{Mg}_{2}(\mu-\mathrm{Cl})_{2}(\mu-$ THF), (II), was structurally investigated (Cotton et al., 1997); for comparison, the $\mathrm{Mg}-\mathrm{O}(\mu-\mathrm{THF})$ distances in (II) are 2.322 (6) and 2.357 (6) \AA, while the $\mathrm{Mg}-\mathrm{O}-\mathrm{Mg}$ angle is 84.3 (2) ${ }^{\circ}$. However, the bridging THF ligand is well known in the structures of alkali and rare earth metals complexes; there are 70 entries in the CSD, of which 29 are Li derivatives.

Compound (I) is the first structurally characterized example of an Mg complex with bridging (μ-C, N-pyridyl-2) ligands. However, this bridging ligand is common for di- and polynuclear complexes of other metals (110 entries in the CSD, of which 85 are compounds of 8 B group metals).

In the dimeric structure of (I), the Br atoms are terminal. In contrast, an analysis of the CSD demonstrates that in all previously investigated di- and polymeric structures of Grignard reagents, the halogen atoms serve as bridges forming $\left[\mathrm{Mg}_{2}(\mu \text {-Hal })_{2}\right]$ fragments (16 entries).

Previously, the synthesis of closely related Grignard reagents (2-pyridyl) $\mathrm{Mg} X \cdot 2 \mathrm{THF}$ ($X=\mathrm{Br}$ and I) was reported and their unit-cell parameters were determined (Paradies, 1974). However, no information on their molecular structures was published.

The crystals of (I) contain disordered solvent THF molecules lying on a fourfold axis. These THF molecules occupy the cavities between the main molecules.

Experimental

The synthetic procedure for (I) reported by Paradies \& Görbing (1969) was found to be non-reproducible. This fact was mentioned by Furukava et al. (1987). Compound (I) was prepared by treatment of i PrMgBr with 2-brompyridine (Trécourt et al., 1999) and for the first time isolated in pure form (yield 58\%). The crystals of (I) decompose rapidly in open air.

Crystal data

$\left[\mathrm{Mg}_{2} \mathrm{Br}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)_{2}\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}\right)_{3}\right]--$
$\quad 0.5 \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$
$M_{r}=616.99$
Tetragonal, $P 4 / n c c$
$a=17.3368(3) \AA$
$c=18.8696(4) \AA$
$V=5671.53(18) \AA^{3}$

$$
\begin{aligned}
& Z=8 \\
& D_{x}=1.445 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=2.93 \mathrm{~mm}^{-1} \\
& T=120(2) \mathrm{K} \\
& \text { Block, colourless } \\
& 0.30 \times 0.20 \times 0.10 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker SMART 1K diffractometer ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
$T_{\text {min }}=0.473, T_{\text {max }}=0.758$
30363 measured reflections 3108 independent reflections 2022 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.093$ $\theta_{\text {max }}=27.0^{\circ}$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 / {\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0384 P)^{2}\right.} \\
&+1.9833 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.47 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.36 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Mg} 1-\mathrm{Br} 1$	$2.4887(9)$	$\mathrm{Mg} 1-\mathrm{C} 1^{\mathrm{i}}$	$2.149(3)$
$\mathrm{Mg} 1-\mathrm{O} 1$	$2.089(2)$	$\mathrm{Mg} 1-\mathrm{O} 2$	$2.374(2)$
$\mathrm{Mg} 1-\mathrm{N} 1$	$2.129(3)$		
$\mathrm{O} 1-\mathrm{Mg} 1-\mathrm{N} 1$	$93.15(9)$	$\mathrm{C} 1^{\mathrm{i}}-\mathrm{Mg} 1-\mathrm{Br} 1$	$120.98(8)$
$\mathrm{O} 1-\mathrm{Mg} 1-\mathrm{C} 1^{\mathrm{i}}$	$95.07(10)$	$\mathrm{O} 2-\mathrm{Mg} 1-\mathrm{Br} 1$	$89.57(5)$
$\mathrm{N} 1-\mathrm{Mg} 1-\mathrm{C} 1^{\mathrm{i}}$	$115.52(11)$	$\mathrm{C} 6-\mathrm{O} 2-\mathrm{C} 6^{\mathrm{i}}$	$108.2(3)$
$\mathrm{O} 1-\mathrm{Mg} 1-\mathrm{O} 2$	$175.18(8)$	$\mathrm{C} 6-\mathrm{O} 2-\mathrm{Mg} 1^{\mathrm{i}}$	$115.36(12)$
$\mathrm{N} 1-\mathrm{Mg} 1-\mathrm{O} 2$	$83.16(8)$	$\mathrm{C} 6^{\mathrm{i}}-\mathrm{O} 2-\mathrm{Mg} 1^{\mathrm{i}}$	$114.16(12)$
$\mathrm{C} 1^{\mathrm{i}}-\mathrm{Mg} 1-\mathrm{O} 2$	$83.78(8)$	$\mathrm{C} 6-\mathrm{O} 2-\mathrm{Mg} 1$	$114.16(12)$
$\mathrm{O} 1-\mathrm{Mg} 1-\mathrm{Br} 1$	$95.02(6)$	$\mathrm{C} 6^{\mathrm{i}}-\mathrm{O} 2-\mathrm{Mg} 1$	$115.36(12)$
$\mathrm{N} 1-\mathrm{Mg} 1-\mathrm{Br} 1$	$121.74(8)$	$\mathrm{Mg} 1^{\mathrm{i}}-\mathrm{O} 2-\mathrm{Mg} 1$	$88.86(10)$

Symmetry code: (i) $-y,-x,-z+\frac{1}{2}$.

The possibility of partial positional disorder of C 1 and N 1 was checked; no evidence for such disorder was found. The disordered solvent (THF) molecule was refined isotropically with restrained CC and $\mathrm{C}-\mathrm{O}$ distances. The position of the O atom in the fivemembered ring of the solvent THF molecule was assigned by analysis of isotropic displacement parameters and confirmed by the fact that the methylene group could not be placed in the O22 site without forming unusually short intermolecular $\mathrm{H} \cdots \mathrm{H}$ contacts (1.90$1.94 \AA)$. All H atoms were placed in calculated positions $(\mathrm{C}-\mathrm{H}=$ $0.95-0.99 \AA$) and refined using a riding model with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}$ (carrier)

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

metal-organic papers

SHELXTL-Plus (Bruker, 2000); software used to prepare material for publication: SHELXTL-Plus.

The authors thank the RFBR for financial support (grant $04-03-32288$). AVC is grateful to the Russian Science Support Foundation.

References

Al-Juaid, S. S., Avent, A. G., Eaborn, C., El-Hamruni, S. M., Hawkes, S. A., Hill, M. S., Hopman, M., Hitchcock, P. B. \& Smith, J. D. (2001). J. Organomet. Chem. 631, 76-86.
Allen, F. H. (2002). Acta Cryst. B58, 380-388.

Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA,.
Bruker (2000). SHELXTL-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2003). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Cotton, F. A., Haefner, S. C., Matonic, J. H., Wang, X. \& Murillo, C. A. (1997). Polyhedron, 16, 541-550.
Furukava, N., Shibutani, T. \& Fujihara, H. (1987). Tetrahedron Lett. 28, 58455848.

Paradies, H. H. (1974). Naturwissenschaften, 61, 168-169.
Paradies, H. H. \& Görbing, M. (1969). Angew. Chem. 81, 293.
Sheldrick, G. M. (1997). SADABS, SHELXS97 and SHELXL97. University of Göttingen, Germany.
Toney, J. \& Stucky, G. D. (1971). J. Organomet. Chem. 28, 5-20.
Trécourt, F., Breton, G., Bonnet, V., Mongin, F., Marsais, F. \& Queguiner, G. (1999). Tetrahedron Lett. 40, 4339-4342.

Vallino, M. (1969). J. Organomet. Chem. 20, 1-10.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

